4.7 Article

Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks

期刊

MEDICAL IMAGE ANALYSIS
卷 52, 期 -, 页码 68-79

出版社

ELSEVIER
DOI: 10.1016/j.media.2018.11.003

关键词

Cardiac CT; Motion artifact measure; Coronary angiography; Convolutional neural network

向作者/读者索取更多资源

Excellent image quality is a primary prerequisite for diagnostic non-invasive coronary CT angiography. Artifacts due to cardiac motion may interfere with detection and diagnosis of coronary artery disease and render subsequent treatment decisions more difficult. We propose deep-learning-based measures for coronary motion artifact recognition and quantification in order to assess the diagnostic reliability and image quality of coronary CT angiography images. More specifically, the application, steering and evaluation of motion compensation algorithms can be triggered by these measures. A Coronary Motion Forward Artifact model for CT data (CoMoFACT) is developed and applied to clinical cases with excellent image quality to introduce motion artifacts using simulated motion vector fields. The data required for supervised learning is generated by the CoMoFACT from 17 prospectively ECG-triggered clinical cases with controlled motion levels on a scale of 0-10. Convolutional neural networks achieve an accuracy of 93.3% +/- 1.8% for the classification task of separating motion-free from motion-perturbed coronary cross-sectional image patches. The target motion level is predicted by a corresponding regression network with a mean absolute error of 1.12 +/- 0.07. Transferability and generalization capabilities are demonstrated by motion artifact measurements on eight additional CCTA cases with real motion artifacts. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据