4.7 Article

Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2019.02.078

关键词

Wire arc additive manufacturing; Stainless steel; Quality assessment; Microstructural characterization; Mechanical properties

资金

  1. National Natural Science Foundation of China [51875213]

向作者/读者索取更多资源

Wire arc additive manufacturing (WAAM) features advantages such as low cost and high disposition rate, and thus WAAM is a feasible additive manufacturing process. Although some characteristics of WAAM have been documented in the literature, the process stability, structural integrity, component morphology, microstructure, and mechanical properties during WAAM under different arc modes are not comprehensively demonstrated and understood. Here, we performed WAAM experiments with 316L stainless steel under different arc modes and a constant deposition rate, and then we discussed the mechanism and impact of the arc mode on the manufacturing process stability, structural integrity, microstructures, and mechanical properties. The results indicate that the SpeedPulse and SpeedArc additive manufacturing processes are relatively stable, significantly efficient, and structurally sound. Although the deposition rate and scanning speed of SpeedPulse WAAM and SpeedArc WAAM are the same, SpeedArc WAAM has a lower heat input and a higher cooling rate. Therefore, SpeedArc WAAM produces a finer solidification structure than SpeedPulse WAAM. The ultimate tensile strengths of the SpeedPulse and SpeedArc additive manufactured specimens along the horizontal direction are greater than 540 MPa and slightly greater than previously reported results. Due to the lower heat input and finer solidification structure, a component produced by SpeedArc WAAM has greater tensile strength and hardness than a component produced by SpeedPulse WAAM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据