4.7 Article

The effects of carbon on the phase stability and mechanical properties of heat-treated FeNiMnCrAl high entropy alloys

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2019.01.083

关键词

High entropy alloy; Phase stability; Carbides; Mechanical properties

资金

  1. Thayer PhD Innovation Program
  2. US Department of Energy, Office of Basic Energy Sciences [DE-SC0018962]
  3. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  4. U.S. Department of Energy (DOE) [DE-SC0018962] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

This work systematically investigates the effect of carbon on the phase stability and room- temperature tensile performance of an annealed Fe40.4Ni11.3Mn34.8Al7.5Cr6 (at%) high entropy alloy without (HEA) and with 1.1% carbon (CHEA). Four annealing conditions were investigated: 773 K for 13 d and 42 d, 973 K for 20 d, and 1073 K and 1423 K for 24 h. The resulting microstructures were analyzed using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atom probe tomography (APT). Vickers hardness testing and room- temperature tensile testing were used to determine the mechanical properties of the annealed HEA and the CHEA. APT composition profiles revealed fine Ni,Mn,Al-enriched matrix precipitates in the CHEA annealed at 773 K for 13 d. After ageing at 773 K for 42 d, colonies of (Ni,Fe)(2)MnAl- enriched Heusler phase lamellae were observed at the grain boundaries (GBs) and in the matrix for the HEA, while GB lamellar colonies of Mn,Cr-enriched M23C6 carbides were observed for the CHEA. Due to the presence of the GB carbides, the resulting room-temperature elongation to fracture for the CHEA annealed at 773 K for 42 d was similar to 1% compared to similar to 11% for the HEA given the same anneal. At higher annealing temperatures, the microstructure contains Ni,Al-rich and Mn,Cr,C-rich precipitates that alternate along the GBs and appear to be associated with each other in the matrix. Electron diffraction analysis indicates the aforementioned Ni,Al-precipitates and Mn,Cr-carbides have b.c.c. and f.c.c. crystal structures, respectively. Once again, a low elongation to fracture (2%) was seen for the carbon-containing material compared to its un-doped counterpart (23%) which solely contained NLAl-rich b.c.c. precipitates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据