4.7 Article

Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2019.02.041

关键词

Additive manufacturing; Heat treatment; In-situ straining; Scanning electron microscopy

资金

  1. National Sustainability Programme I of the Ministry of Education of the Czech Republic [LO1502]

向作者/读者索取更多资源

Additive manufacturing (AM) is an advanced technology used for the manufacture of products that have intricate shapes and complex inner geometries. Various metal powders can be used for AM; however, the resulting microstructures will differ profoundly from those obtained via the casting, heat treatment, or thermomechanical processing of metals with the same chemical composition. This is because of the rapid heating and cooling rates used during three-dimensional (3D) printing. Further complications arise from the repeated heating and cooling of some regions, which is owed to the step-by-step formation of the solidified layers. A powder consisting of 1.2709 (X3NiCoMoTi 18-9-5) low-carbon maraging steel was used in an AM experiment. Given the high residual stresses that exist within printed metals, a post-processing heat treatment is desirable to limit the risk of cracking. In this study, solution annealing and hardening treatments were applied to the printed samples to induce changes in their microstructures and mechanical properties. The mechanical properties and microstructures of the builds were characterised and compared to those of a bar of conventional steel with the same chemical composition. During tensile loading, the fracture that was initiated at the sites of metallurgical defects was observed in situ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据