4.7 Article

Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures

期刊

MATERIALS CHARACTERIZATION
卷 149, 期 -, 页码 184-197

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.matchar.2019.01.028

关键词

Inconel 718; Microstructure; Texture; Additive manufacturing; High cyclic fatigue

资金

  1. Turbocam Energy Solutions
  2. New Hampshire Innovation Research Center [13R265]

向作者/读者索取更多资源

This paper presents the main results from an investigation into the effect of initial microstructure on high cycle fatigue behavior of Inconel 718 superalloy. To create a variety of initial microstructures, the material was deposited at a 45 degrees (diagonal) and a 90 degrees (horizontal) angle with respect to the loading direction using direct metal laser melting (DMLM). In addition, a group of samples underwent hot isostatic pressing (HIP). Finally, a set of wrought Inconel 718 specimens was prepared. The samples underwent the same heat treatment per AMS 5663 after machining. The microstructure in the samples was characterized and found to vary in terms of grain structure, crystallographic texture, content of annealing twin boundaries, precipitates, and porosity. Stress controlled rotary bending fatigue tests were carried out to an endurance limit of 107 cycles at room temperature and at 500 degrees C with stress amplitudes ranging from 200 MPa to 1200 MPa. It was found that for low stress amplitudes, the fatigue strength is higher at elevated temperature than at room temperature for all the studied samples. For higher stress amplitudes, the materials showed a higher fatigue strength at room temperature than at elevated temperature. At room temperature, the wrought material was found to exhibit superior fatigue performance over the DMLM diagonal and DMLM horizontal materials. In contrast, at 500 degrees C, the wrought and DMLM materials behaved similarly, while the HIPed material performed notably worse than all other materials. The observed behaviors are rationalized in terms of the initial microstructure of the samples. Since crystallographic texture is weak in every material, effects of gran size, porosity, precipitates, and grain boundaries are discussed as the main competing microstructural features influencing the fatigue performances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据