4.7 Article

Tuning Hydrogel Mechanics by Kinetically Dependent Cross-Linking

期刊

MACROMOLECULES
卷 52, 期 3, 页码 1249-1256

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.8b02410

关键词

-

资金

  1. National Natural Science Foundation of China [21803069]

向作者/读者索取更多资源

Free radical polymerization is an extensively used method to form a hydrogel network, in which the spatial inhomogeneity can be manipulated by kinetic control. However, it is still a challenge to direct mechanical properties by tuning the kinetics of free radical polymerization. Herein, kinetically dependent cross-linking is used to directly connect with the mechanical properties of hydrogels by tuning the reactivity of the macro-cross-linkers. F127 (PEO99-PPO65-PEO99) diallyl ether (F127DE) macro-cross-linker with low reactivity was first synthesized, and it can induce inner-micelles cross-linking due to its kinetic characteristic that its incorporation in the primary chain is slow at an early stage while rapid at a late stage of copolymerization with acrylamide (AAm) monomer. Thus, the highly cross-linked agglomerations can be effectively controlled in the well-dispersed micelle cross-linking, leading to an internally cross-linked micelle that is far stronger than a micelle formed only by weak supramolecular interaction. Compared to the weak and brittle hydrogel based on F127 diacrylate (F127DA) macro-cross-linker with high reactivity, the hydrogel based on F127DE exhibits a homogeneous network and outstanding strength with a fracture stress of 0.8 MPa and a fracture strain of 1600%. This novel and facile strategy can provide new insights into the utilization of cross-linking kinetics to improve the mechanical property of hydrogels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据