4.7 Article

Size dependence of metabolism within marine picoplankton populations

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 64, 期 4, 页码 1819-1827

出版社

WILEY
DOI: 10.1002/lno.11153

关键词

-

资金

  1. National Science Foundation (Center for Microbial Oceanography: Research and Education) [DBI 0424599]
  2. Gordon and Betty Moore Foundation [3794]
  3. Simons Foundation [329108, 549894]

向作者/读者索取更多资源

Cell size is broadly applied as a convenient parameterization of ecosystem models and is widely applicable to constrain the activities of organisms spanning large size ranges. However, the size structure of the majority of the marine picoplankton assemblage is narrow and beneath the lower size limit of the empirical allometric relationships established so far (typically >1 mu m). We applied a fine-resolution (0.05 mu m increments) size fractionation method to estimate the size dependence of metabolic activities of picoplankton populations in the 0.10-1.00 mu m size interval within the surface North Pacific Subtropical Gyre microbial assemblage. Group-specific carbon retained on each filter was quantified by flow cytometric conversion of light scatter to cellular carbon quotas. Median carbon quotas were 25.7, 22.6, and 5.9 fg C cell(-1) for populations of the picocyanobacterium Prochlorococcus, high-scatter heterotrophs, and low-scatter heterotrophs, respectively. Carbon-specific rates of primary production as a function of cell size, using the C-14 method, and phosphate transport, using P-33 radiotracers, resulted in negative power scalings (b) within populations of Prochlorococcus and heterotrophs of b = -1.3 and b = -1.1, respectively. These findings are in contrast to the positive empirical power scaling comprising the broader and larger prokaryote category (b = 0.7) and point to within-population variability in cell physiology and metabolism for these important microbial groups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据