4.3 Article

Adaptive allocation of human visual working memory capacity during statistical and categorical learning

期刊

JOURNAL OF VISION
卷 19, 期 2, 页码 -

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/19.2.11

关键词

visual working memory; visual learning; ideal observer

资金

  1. National Science Foundation (NSF) National Science Foundation Research Traineeship (NRT) graduate training grant [NRT-1449828]
  2. NSF Graduate Research Fellowship [DGE-1419118]
  3. NSF [DRL-1560829, DRL-1561335]

向作者/读者索取更多资源

Human brains are finite, and thus have bounded capacity. An efficient strategy for a capacity-limited agent is to continuously adapt by dynamically reallocating capacity in a task-dependent manner. Here we study this strategy in the context of visual working memory (VWM). People use their VWM stores to remember visual information over seconds or minutes. However, their memory performances are often errorprone, presumably due to VWM capacity limits. We hypothesize that people attempt to be flexible and robust by strategically reallocating their limited VWM capacity based on two factors: (a) the statistical regularities (e.g., stimulus feature means and variances) of the to-be-remembered items, and (b) the requirements of the task that they are attempting to perform. The latter specifies, for example, which types of errors are costly versus irrelevant for task performance. These hypotheses are formalized within a normative computational modeling framework based on rate-distortion theory, an extension of conventional Bayesian approaches that uses information theory to study rate-limited (or capacity-limited) processes. Using images of plants that are naturalistic and precisely controlled, we carried out two sets of experiments. Experiment 1 found that when a stimulus dimension (the widths of plants' leaves) was assigned a distribution, subjects adapted their VWM performances based on this distribution. Experiment 2 found that when one stimulus dimension (e.g., leaf width) was relevant for distinguishing plant categories but another dimension (leaf angle) was irrelevant, subjects' responses in a memory task became relatively more sensitive to the relevant stimulus dimension. Together, these results illustrate the task-dependent robustness of VWM, thereby highlighting the dependence of memory on learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据