4.7 Article

A competitive immunoassay for ultrasensitive detection of Hg2+ in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering

期刊

ANALYTICA CHIMICA ACTA
卷 906, 期 -, 页码 139-147

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2015.12.021

关键词

Immunochromatographic test; Competitive immunoassay; Mercury(II) ion; Surface-enhanced Raman scattering; Colloidal gold nanoparticles

资金

  1. National Natural Science Foundation of China (NSFC) [21075087, 21175097]
  2. Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg2+. This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg2+ and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg2+. The ICT was able to directly detect Hg2+ without complexing due to the specific recognition of the mAb with Hg2+. The IC50 and limit of detection (LOD) of the assay for Hg2+ detection were 0.12 ng mL(-1) and 0.45 pg mL(-1), respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg2+ were in range of 88.3-107.3% with the relative standard deviations (RSD) of 1.5-9.5% (n = 3). The proposed ICT was used for the detection of Hg2+ in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg2+ in environmental water samples and biological serum and urine samples. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据