4.7 Article

A highly thermal stable solid phase microextraction fiber prepared by an inorganic binder

期刊

ANALYTICA CHIMICA ACTA
卷 918, 期 -, 页码 35-42

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2016.03.007

关键词

Solid phase microextraction; Acid aluminum phosphate binder; MoS2; Thermal stability; Polycyclic aromatic hydrocarbons

向作者/读者索取更多资源

An easy method to prepare solid phase microextraction fibers by introducing an inorganic binder was demonstrated in this study, where MoS2 was selected as the extraction phase material because of its graphite-like layered structure with large specific adsorption area and good stability, and was then adhered to a stainless steel wire by acid aluminum phosphate binder with the spraying method. The as-prepared solid phase microextraction fiber coupled with gas chromatography was then used to extract some polycyclic aromatic hydrocarbons target analytes including the low-volatile benzo(a) pyrene etc. from a standard sample. Comparing with the MoS2-epoxy resin and commercial polyacrylate fibers, the MoS2-acid aluminum phosphate fiber has a higher thermal stability because of highly thermal stable acid aluminum phosphate, which is durable for a long service life at a high temperature (320 degrees C), and has the advantage in the extraction of low-volatility analytes. After the optimization of adsorption and desorption factors (ionic strength, adsorption time and temperature, and desorption temperature), method detection limits of <0.1 mu g L-1 were achieved, and the calibration curves were all linear (R-2 >= 0.9981) within the range of 0.1-100 mu g L-1. The satisfying repeatability was also achieved, the RSD values of single-fiber were 3.49-5.81%, and the ones of fiber-to-fiber were 5.32-7.22%. As a result, the present fiber with good thermal stability can work at high temperature for a long service life, which is useful for the detection of low-volatility target analytes in practical applications. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据