4.3 Article

Improved stability in organic light-emitting devices by mixing ambipolar and wide energy gap hosts

期刊

出版社

WILEY
DOI: 10.1002/jsid.761

关键词

-

资金

  1. DuPont Electronics and Imaging
  2. National Science Foundation Graduate Research Fellowship [00039202]

向作者/读者索取更多资源

We demonstrate improved stability in phosphorescent organic light-emitting devices (OLEDs) by incorporating a wide energy gap host material into an ambipolar emissive layer. Unlike conventional mixed-host OLEDs that combine hole- and electron-transporting hosts, charge transport in this device occurs primarily along the ambipolar host and the emitter, while the wide energy gap host serves to modify the charge injection and transport characteristics of the emissive layer. This approach allows both the width and position of the exciton recombination zone to be tuned without introducing exciplex states. Whereas overall device stability improves with increasing recombination zone width in conventional mixed-host OLEDs, mixing in this system reduces the recombination zone extent yet still increases device lifetime. By decoupling luminance losses into the photostability of the emitter and the exciton formation efficiency, we show that this enhancement arises from a trade-off between bulk and interfacial degradation. The addition of the wide energy gap host moves the recombination zone away from the interface between the hole-transport layer and the emissive layer, sacrificing a modest increase in bulk degradation to substantially reduce interfacial degradation. We find that the lifetime can be improved by 50% by balancing these competing degradation pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据