4.4 Article

Non-Newtonian power-law fluid's thermal characteristics across periodic array of circular cylinders

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s40430-019-1584-3

关键词

Cylinders; Periodic flow; Average Nusselt number; Fluid volume fractions; Prandtl number; Power-law fluids

向作者/读者索取更多资源

The thermal characteristics of incompressible non-Newtonian power-law fluids across periodic array of circular cylinders have been examined using the finite volume-based numerical solver ANSYS-FLUENT for the following ranges of physical parameters: Reynolds number; 1Re40: Prandtl number; 1Pr100: power-law index; 0.40n1.8; and fluid volume fractions ranging from 0.70 to 0.99. The thermal features have been described via isotherm patterns, local and average Nusselt numbers and the Colburn heat transfer factor and found to be strongly dependent over the above physical parameters. It was observed that the dense isotherms with the increasing inertial and viscous diffusion suggest an improvement in the rate of heat transfer across the periodic cylinders. An increase in local Nusselt number was seen with the increasing values of Re and/or Pr across all the fluid volume fractions. Further, the different behavior of the average Nusselt number was noticed because of the shear-thinning and shear-thickening natures. An enhancement of about 97% was noticed in the shear-thinning region between the extreme fluid volume fractions for the highest value of Pr and the lowest values of Re and n. However, in many cases, the enhancement was noticed to be even more than 100%. An empirical correlation for the average Nusselt number and the Colburn heat transfer factor (j(H)) has been developed to give the additional physical insight of the results. Finally, the comparison was made with the available literature which displayed a good agreement with the present results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据