4.6 Article

Raman chemical imaging of the rhizosphere bacterium Pantoea sp YR343 and its co-culture with Arabidopsis thaliana

期刊

ANALYST
卷 141, 期 7, 页码 2175-2182

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6an00080k

关键词

-

资金

  1. Department of Energy through Oak Ridge National Laboratory (PTX-UT-Battelle) [ORNL-4000132808]
  2. Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area
  3. U.S. Department of Energy [DE-AC05-00OR22725]

向作者/读者索取更多资源

Chemical imaging of plant-bacteria co-cultures makes it possible to characterize bacterial populations and behaviors and their interactions with proximal organisms, under conditions closest to the environment in the rhizosphere. Here Raman micro-spectroscopy and confocal Raman imaging are used as minimally invasive probes to study the rhizosphere bacterial isolate, Pantoea sp. YR343, and its co-culture with model plant Arabidopsis thaliana by combining enhanced Raman spectroscopies with electron microscopy and principal component analysis (PCA). The presence of carotenoid pigments in the wild type Pantoea sp. YR343 was characterized using resonance Raman scattering, which was also used to confirm successful disruption of the crtB gene in an engineered carotenoid mutant strain. Other components of the Pantoea sp. YR343 cells were imaged in the presence of resonantly enhanced pigments using a combination of surface enhanced Raman imaging and PCA. Pantoea sp. YR343 cells decorated with Ag colloid synthesized ex situ gave spectra dominated by carotenoid scattering, whereas colloids synthesized in situ produced spectral signatures characteristic of flavins in the cell membrane. Scanning electron microscopy (SEM) of whole cells and transmission electron microscopy (TEM) images of thinly sliced cross-sections were used to assess structural integrity of the coated cells and to establish the origin of spectral signatures based on the position of Ag nanoparticles in the cells. Raman imaging was also used to characterize senescent green Arabidopsis thaliana plant roots inoculated with Pantoea sp. YR343, and PCA was used to distinguish spectral contributions from plant and bacterial cells, thereby establishing the potential of Raman imaging to visualize the distribution of rhizobacteria on plant roots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据