4.8 Article

Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 16, 页码 6623-6630

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b01226

关键词

-

资金

  1. China Scholarship Council (CSC)
  2. Alexander von Humboldt foundation
  3. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy [EXC 2008/1, 390540038]
  4. Berlin Graduate School of Natural Sciences and Engineering (BIG-NSE)

向作者/读者索取更多资源

Covalent organic frameworks (COFs) are of interest for many applications originating from their mechanically robust architectures, low density, and high accessible surface area. Depending on their linkers and binding patterns, COFs mainly exhibit microporosity, even though COFs with small mesopores have been reported using extended linkers. For some applications, especially when fast mass transport is desired, hierarchical pore structures are an ideal solution, e.g., with small micropores providing large surface areas and larger macropores providing unhindered transport to and from the materials surface. Herein, we have developed a facile strategy for the fabrication of crystalline COFs with inherent microporosity and template-induced, homogeneously distributed, yet tunable, macroporous structures. This method has been successfully applied to obtain various beta-ketoenamine-based COFs with interconnected macro-microporous structures. The as-synthesized macroporous COFs preserve high crystallinity with high specific surface area. When bipyridine moieties are introduced into the COF backbone, metals such as Co2+ can be coordinated within the hierarchical pore structure (macro-TpBpy-Co). The resulting macro-TpBpy-Co exhibits a high oxygen evolution reaction (OER) activity, which is much improved compared to the purely microporous COF with a competitive overpotential of 380 mV at 10 mA/cm(2). This can be attributed to the improved mass diffusion properties in the hierarchically porous COF structures, together with the easily accessible active Co2+-bipyridine sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据