4.8 Article

Secondary Electrostatic Interaction Model Revised: Prediction Comes Mainly from Measuring Charge Accumulation in Hydrogen-Bonded Monomers

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 12, 页码 4878-4885

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b13358

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO/CW)

向作者/读者索取更多资源

The secondary electrostatic interaction (SEI) model is often used to predict and explain relative hydrogen bond strengths of self-assembled systems. The SEI model oversimplifies the hydrogen-bonding mechanisms by viewing them as interacting point charges, but nevertheless experimental binding strengths are often in line with the model's predictions. To understand how this rudimentary model can be predictive, we computationally studied two tautomeric quadruple hydrogen-bonded systems, DDAA-AADD and DADA-ADAD. Our results reveal that when the proton donors D (which are electron-donating) and the proton acceptors A (which are electron-withdrawing) are grouped together as in DDAA, there is a larger accumulation of charge around the frontier atoms than when the proton donor and acceptor groups are alternating as in DADA. This accumulation of charge makes the proton donors more positive and the proton acceptors more negative, which enhances both the electrostatic and covalent interactions in the DDAA dimer. The SEI model is thus predictive because it provides a measure for the charge accumulation in hydrogen-bonded monomers. Our findings can be understood from simple physical organic chemistry principles and provide supramolecular chemists with meaningful understanding for tuning hydrogen bond strengths and thus for controlling the properties of self-assembled systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据