4.8 Article

Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 11, 页码 4711-4720

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b13613

关键词

-

资金

  1. New Mexico Small Business Assistance Program
  2. University of California Laboratory Fees Research Program
  3. Exascale Computing Project of the U.S. Department of Energy Office of Science [17-SC-20-SC]
  4. Exascale Computing Project of the National Nuclear Security Administration [17-SC-20-SC]
  5. National Institutes of Health [1R01GM108889-01]
  6. U.S. Department of Energy [89233218CNA000001]

向作者/读者索取更多资源

To compare ordered water positions from experiment with those from molecular dynamics (MD) simulations, a number of MD models of water structure in crystalline endoglucanase were calculated. The starting MD model was derived from a joint X-ray and neutron diffraction crystal structure, enabling the use of experimentally assigned protonation states. Simulations were performed in the crystalline state, using a periodic 2 x 2 x 2 supercell with explicit solvent. Water X-ray and neutron scattering density maps were computed from MD trajectories using standard macromolecular crystallography methods. In one set of simulations, harmonic restraints were applied to bias the protein structure toward the crystal structure. For these simulations, the recall of crystallographic waters using strong peaks in the MD water electron density was very good, and there also was substantial visual agreement between the boomerang-like wings of the neutron scattering density and the crystalline water hydrogen positions. An unrestrained simulation also was performed. For this simulation, the recall of crystallographic waters was much lower. For both restrained and unrestrained simulations, the strongest water density peaks were associated with crystallographic waters. The results demonstrate that it is now possible to recover crystallographic water structure using restrained MD simulations but that it is not yet reasonable to expect unrestrained MD simulations to do the same. Further development and generalization of MD water models for force field development, macromolecular crystallography, and medicinal chemistry applications is now warranted. In particular, the combination of room-temperature crystallography, neutron diffraction, and crystalline MD simulations promises to substantially advance modeling of biomolecular solvation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据