4.7 Article

Single-phase metamaterial plates for broadband vibration suppression at low frequencies

期刊

JOURNAL OF SOUND AND VIBRATION
卷 444, 期 -, 页码 108-126

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2018.12.022

关键词

Flexural waves in thin plates; Platonic crystals; Metamaterial plates; Vibration suppression in plates; Resonant bandgaps

资金

  1. Ministerio de Economia y Competitividad of the Spanish government
  2. European Union Fondo Europeo de Desarrollo Regional (FEDER) [TEC2014-53088-C3-1-R]
  3. National Natural Science Foundation of China [11432004, 11421091]
  4. China Scholarship Council [201606120070]

向作者/读者索取更多资源

By studying platonic crystals based on lattices of cavities containing N-beam resonators, we conclude that crystals made of 1-beam resonators easily produce low-frequency omnidirectional bandgaps. Based on this favorable property, hardly obtained for resonant cavities containing a higher number of beams N >= 2, we have designed single-phase metamaterial plates for the suppression of low frequency flexural waves in a broad range of frequencies. These metamaterials are obtained by using resonant cavities containing a multiple number M of identical 1-beam resonators uniformly distributed in the cavity. Square lattices of this type of resonators have been studied by using the impedance matrix approach and the multiple scattering method. This semi-analytical method has been employed to show the existence of complete bandgaps whose width can be optimized by increasing M. For the case M = 4, the largest number of resonators studied here, three complete bandgaps separated by two narrow passbands appear in the band structure. The formation of these complete bandgaps originates from the dynamic interaction between different local resonators as well as their interaction with the propagating waves in the host plate. By using composite structures consisting of platonic crystal slabs with complementary bandgaps, these separated bandgaps easily merge into a broadband wave attenuation region. The normalized width, defined as the percentage of the bandwidth to its central frequency, reaches 95.3%, representing an enhancement of about one order of magnitude compared with the absolute bandwidth obtained for the case of a single 1-beam resonator in the cavity. It is shown that the gaps can be easily tuned to lower frequencies by changing the geometrical parameters, such as the length of the beam, the radius and thickness of the smaller circular plate. Since the metamaterial is made of a single-phase material without attaching heavy masses, the work reported here provides a simple approach to construct low-cost structures with potential applications in aeronautic and astronautic industries for broadband vibration suppression at low frequencies. (C) 2018 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据