4.6 Article

High-Order Low-Dissipation Targeted ENO Schemes for Ideal Magnetohydrodynamics

期刊

JOURNAL OF SCIENTIFIC COMPUTING
卷 80, 期 1, 页码 692-716

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10915-019-00941-2

关键词

TENO; WENO; High-order accuracy; Low dissipation; MHD

资金

  1. U.S. Air Force Office of Scientific Research (AFOSR) [1194592-1-TAAHO]
  2. Eliza Ricketts Postdoctoral Fellowship

向作者/读者索取更多资源

The recently proposed targeted ENO (TENO) schemes (Fu et al. J Comput Phys 305:333-359, 2016) are demonstrated to feature the controllable low numerical dissipation and sharp shock-capturing property in compressible gas dynamic simulations. However, the application of low-dissipation TENO schemes to ideal magnetohydrodynamics (MHD) is not straightforward. The complex interaction between fluid mechanics and electromagnetism induces extra numerical challenges, including simultaneously preserving the ENO-property, maintaining good numerical robustness and low dissipation as well as controlling divergence errors. In this paper, based on an unstaggered constrained transport framework to control the divergence error, we extend a set of high-order low-dissipation TENO schemes ranging from 5-point to 8-point stencils to solving the ideal MHD equations. A unique set of built-in parameters for each TENO scheme is determined. Different from the TENO schemes in Fu et al. (2016), a modified scale-separation formula is developed. The new formula can achieve stronger scale separation, and it is simpler and more efficient than the previous version as the computation cost of high-order global smoothness measure K is avoided. The performances of tailored schemes are systematically studied by several benchmark simulations. Numerical experiments demonstrate that the TENO schemes in the constrained transport framework are promising to simulate more complex MHD flows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据