4.6 Article

Efficient Stochastic Galerkin Methods for Maxwell's Equations with Random Inputs

期刊

JOURNAL OF SCIENTIFIC COMPUTING
卷 80, 期 1, 页码 248-267

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10915-019-00936-z

关键词

Maxwell's equations; Finite element method; Random inputs; Polynomial chaos methods; Stochastic Galerkin

资金

  1. NSF [DMS-1416742]
  2. NSFC [11671340]
  3. NSF of China [11822111, 11688101, 91630203, 11571351, 11731006]
  4. Science Challenge Project [TZ2018001]
  5. National Key Basic Research Program [2018YFB0704304]
  6. NCMIS
  7. Youth Innovation Promotion Association (CAS)

向作者/读者索取更多资源

In this paper, we are concerned with the stochastic Galerkin methods for time-dependent Maxwell's equations with random input. The generalized polynomial chaos approach is first adopted to convert the original random Maxwell's equation into a system of deterministic equations for the expansion coefficients (the Galerkin system). It is shown that the stochastic Galerkin approach preserves the energy conservation law. Then, we propose a finite element approach in the physical space to solve the Galerkin system, and error estimates is presented. For the time domain approach, we propose two discrete schemes, namely, the Crank-Nicolson scheme and the leap-frog type scheme. For the Crank-Nicolson scheme, we show the energy preserving property for the fully discrete scheme. While for the classic leap-frog scheme, we present a conditional energy stability property. It is well known that for the stochastic Galerkin approach, the main challenge is how to efficiently solve the coupled Galerkin system. To this end, we design a modified leap-frog type scheme in which one can solve the coupled system in a decouple wayyielding a very efficient numerical approach. Numerical examples are presented to support the theoretical finding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据