4.5 Article

Effect of fiber microstructure studied by Raman spectroscopy upon the mechanical properties of carbon fibers

期刊

JOURNAL OF RAMAN SPECTROSCOPY
卷 50, 期 5, 页码 665-673

出版社

WILEY
DOI: 10.1002/jrs.5569

关键词

carbon fiber; disordered structure; microcrystalline; tensile modulus; turbostratic layer

资金

  1. Chinese Academy of Sciences [XDA17020405, CXJJ-17M160]
  2. Natural Science Foundation of Ningbo [2016A610259]
  3. Natural Science Foundation of Zhejiang Province [LY18E080037, LQ16E030003]
  4. National Natural Science Foundation of China [51503216]
  5. Equipment Development Fund in the Field of Key Projects [6140922010103]

向作者/读者索取更多资源

The microstructure of polyacrylonitrile (PAN)-based high-performance carbon fibers, including high-strength carbon fibers (HSCFs), high-modulus carbon fibers (HMCFs), and ultrahigh-modulus carbon fibers (UHMCFs), was systematically characterized by the Raman spectroscopy. Two characteristic bands, D-line and G-line, showed up in the Raman spectra of HSCFs, HMCFs, and UHMCFs. However, the wavenumber of the G-line peak of HSCFs shifted to higher wavenumber (about 1,595 cm(-1)) and that of the D-line peak of HMCFs and UHMCFs shifted to lower wavenumber (about 1,350 cm(-1)). The relationship between the microstructure and mechanical properties of carbon fibers was also studied in detail. It was of significant relevance between surface disordered structure and the mechanical properties of HSCFs, and decreases in the full width at half maximum values of the disorder-induced D-line and A-line could result in higher tensile strength and tensile modulus of HSCFs. As for HMCFs and UHMCFs, the disorder-induced D '-line more easily affected the tensile strength. A higher tensile modulus of HMCF and UHMCF was obtained as a result of decreases in the disordered structure and increases in the graphite structure. An increase of the intensity ratio I-D/I-G together with I-A/I-G (HSCFs) or I-D '/I-G (HMCFs and UHMCFs) could result in increases in the tensile strength and tensile modulus of carbon fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据