4.8 Article

Direct, operando observation of the bilayer solid electrolyte interphase structure: Electrolyte reduction on a non-intercalating electrode

期刊

JOURNAL OF POWER SOURCES
卷 412, 期 -, 页码 725-735

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2018.11.093

关键词

Li ion battery; SEI; In operando diagnostics; Non-intercalating electrode; Neutron reflectometry; Electrochemical quartz crystal microbalance

资金

  1. Office of Naval Research [N00014-14-1-0059]
  2. Department of Energy [DE-SC0018019]
  3. U.S. Department of Energy (DOE) [DE-SC0018019] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The solid electrolyte interphase (SEI) remains a central challenge to lithium-ion battery durability, in part due to poor understanding of the basic chemistry responsible for its formation and evolution. In this study, the SEI on a non-intercalating tungsten anode is measured by operando neutron reflectometry and quartz crystal micro balance. A dual-layer SEI is observed, with a 3.7 nm thick inner layer and a 15.4 nm thick outer layer. Such structures have been proposed in the literature, but have not been definitively observed via neutron reflectometry. The SEI mass per area was 1207.2 ng/cm(2), and QCM provides insight into the SEI formation dynamics during a negative-going voltage sweep and its evolution over multiple cycles. Monte Carlo simulations identify SEI chemical compositions consistent with the combined measurements. The results are consistent with a primarily inorganic, dense inner layer and a primarily organic, porous outer layer, directly confirming structures proposed in the literature. Further refinement of techniques presented herein, coupled with additional complementary measurements and simulations, can give quantitative insight into SEI formation and evolution as a function of battery materials and cycling conditions. This, in turn, will enable scientifically-guided design of durable, conductive SEI layers for Li-ion batteries for a range of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据