4.6 Article

Enhanced activity of multiple TRIC-B channels: an endoplasmic reticulum/sarcoplasmic reticulum mechanism to boost counterion currents

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 597, 期 10, 页码 2691-2705

出版社

WILEY
DOI: 10.1113/JP277241

关键词

Ca2+ release; TRIC channels; sarcoplasmic reticulum; Ryanodine receptor

资金

  1. British Heart Foundation [RG/10/114128576, FS/11/3128790, FS/13/5730647]
  2. Japan Society for the Promotion of Science

向作者/读者索取更多资源

The trimeric intracellular cation channels, TRIC-A and TRIC-B, represent two subtypes of sarcoplasmic reticulum (SR) K+-channel but their individual functional roles are unknown. We therefore compared the biophysical properties of SR K+-channels derived from the skeletal muscle of wild-type (WT) or Tric-a knockout (KO) mice. Because TRIC-A is the major TRIC-subtype in skeletal muscle, WT SR will predominantly contain TRIC-A channels, whereas Tric-a KO SR will only contain TRIC-B channels. When lone SR K+-channels were incorporated into bilayers, the open probability (Po) of channels from Tric-a KO mice was markedly lower than that of channels from WT mice; gating was characterized by shorter opening bursts and more frequent brief subconductance openings. However, unlike channels from WT mice, the Po of SR K+-channels from Tric-a KO mice increased as increasing channel numbers were present in the bilayer, driving the channels into long sojourns in the fully open state. When co-incorporated into bilayers, ryanodine receptor channels did not directly affect the gating of SR K+-channels, nor did the presence or absence of SR K+-channels influence ryanodine receptor activity. We suggest that because of high expression levels in striated muscle, TRIC-A produces most of the counterion flux required during excitation-contraction coupling. TRIC-B, in contrast, is sparsely expressed in most cells and, although lone TRIC-B channels exhibit low Po, the high Po levels reached by multiple TRIC-B channels may provide a compensatory mechanism to rapidly restore K+ gradients and charge differences across the SR of tissues containing few TRIC-A channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据