4.5 Review

Lateral heterostructures and one-dimensional interfaces in 2D transition metal dichalcogenides

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 31, 期 21, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-648X/ab0970

关键词

2D materials; 1D electronic states; interfaces; transition metal dichalcogenides; heterostructures

资金

  1. NSF [DMR 1508325]

向作者/读者索取更多资源

The growth and exfoliation of two-dimensional (2D) materials have led to the creation of edges and novel interfacial states at the juncture between crystals with different composition or phases. These hybrid heterostructures (HSs) can be built as vertical van der Waals stacks, resulting in a 2D interface, or as stitched adjacent monolayer crystals, resulting in one-dimensional (1D) interfaces. Although most attention has been focused on vertical HSs, increasing theoretical and experimental interest in 1D interfaces is evident. In-plane interfacial states between different 2D materials inherit properties from both crystals, giving rise to robust states with unique 1D non-parabolic dispersion and strong spin-orbit effects. With such unique characteristics, these states provide an exciting platform for realizing 1D physics. Here, we review and discuss advances in 1D heterojunctions, with emphasis on theoretical approaches for describing those between semiconducting transition metal dichalcogenides MX2 (with M = Mo, W and X = S, Se, Te), and how the interfacial states can be characterized and utilized. We also address how the interfaces depend on edge geometries (such as zigzag and armchair) or strain, as lattice parameters differ across the interface, and how these features affect excitonic/optical response. This review is intended to serve as a resource for promoting theoretical and experimental studies in this rapidly evolving field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据