4.6 Article

Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 14, 页码 9202-9208

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.9b01037

关键词

-

向作者/读者索取更多资源

Hydrogen is the simplest, oldest, and most widespread molecule in nature. Nevertheless, the vast majority of the hydrogen industrial production stems from steam reforming of methane performed at high temperatures or pressures. Albeit other chemical routes to the hydrogen synthesis, involving, for example, water electrolysis and novel photocatalysts, have recently been explored, no catalyst-free reaction pathways have been identified, seriously limiting the large-scale deployment of hydrogen. On the basis of state-of-the-art ab initio molecular dynamics simulations, here, we present a study revealing a novel synthesis route to hydrogen from neat liquid ethanol, which has been achieved at room temperature and in the absence of any catalyst, upon electric field exposure. This result paves the way to the unprecedented catalyst-free experimental synthesis of hydrogen from liquid ethanol by exploiting a commonly employed field emitter tip apparatus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据