4.6 Article

Self-Organization of PEDOT:PSS Induced by Green and Water-Soluble Organic Molecules

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 15, 页码 9745-9755

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.9b01716

关键词

-

资金

  1. Agency for Science, Technology and Research (A*STAR) Science and Engineering Research Council (SERC) of Singapore [1527200021, 1527200024]

向作者/读者索取更多资源

Water-soluble poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the most prominent commercial polymer used in photovoltaic cells and thermoelectric devices. Experimental studies in the last decade have shown that it is possible to enhance the low electrical conductivity of PEDOT:PSS by solvent treatment, either in-solution or by post-treatment methods. The origin and mechanism of electrical conductivity improvement varied according to different experimental studies. We had recently shown that phase separation of PEDOT:PSS is key to the electrical conductivity enhancement, where dissolution of insulating PSS shell results in the release of conducting PEDOT grains for aggregation. In this study, we demonstrated that dimethyl sulfone (DMSO2), which is a nontoxic, water-soluble, edible organic molecule, can be a greener alternative to the widely used dimethyl sulfoxide for solvent treatment of PEDOT:PSS chains, via a combined experimental and multiscale molecular modeling approaches. Moreover, crystalline DMSO2 nanowire surfaces that remain in the PEDOT:PSS films act as a template for the self-alignment of PEDOT chains that enhance the electrical conductivity further.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据