4.6 Article

Identifying Reaction Species by Evolutionary Fitting and Kinetic Analysis: An Example of CO2 Hydrogenation in DRIFTS

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 14, 页码 8785-8792

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b11105

关键词

-

资金

  1. Innosuisse, the Swiss Innovation Agency

向作者/读者索取更多资源

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigations of molecules at the surface of catalysts exhibit a strong overlap of the adsorption peaks. Therefore, the investigation of the CO2 hydrogenation on a highly active catalyst surface requires a deconvolution of the adsorption spectra to clearly assign the signal to the chemical species. We developed an autonomous and efficient bi-level evolutionary Gaussian fitting (BEGF) procedure with a genetic algorithm at the upper level and a multipeak Gaussian fitting algorithm at the lower level to analyze self-consistently the set of spectra of an entire experiment. We show two examples of the application of BEGF procedure by analyzing the DRIFTS spectral sets of ex situ HCOO-* and CO2 hydrogenation on Ru/Al2O3. The fitting procedure deconvoluted the overlapped peaks and identified the bond vibrations of carbon monoxide, formate, bicarbonate, and carbonate through the developing trends of the peak intensities along the reaction. These revealed the progression of those species over the reaction timeline.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据