4.5 Article

Underlying Role of Brushite in Pathological Mineralization of Hydroxyapatite

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 123, 期 13, 页码 2874-2881

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.9b00728

关键词

-

资金

  1. National Natural Science Foundation of China [41471245, 41071208]
  2. Fundamental Research Funds for the Central Universities [2662017PY061, 2662015PY206]
  3. EU

向作者/读者索取更多资源

The majority of human kidney stones are composed of multiple calcium oxalate crystals with variable amounts of brushite [dicalcium phosphate dihydrate (DCPD)] and hydroxyapatite (HAP) as a nucleus, in which fluid-mediated dissolution and reprecipitation may result in the phase transformation of DCPD to HAP. However, the underlying mechanisms of the phase transition and its modulation by natural inhibitors, such as osteopontin (OPN) proteins, remain poorly understood. Here, the in vitro formation of new phases on the DCPD (010) surface is observed in situ using atomic force microscopy in a simulated hypercalciuria milieu. We demonstrate the presence of an acidic amorphous calcium phosphate (ACP) phase with a characteristic Raman band of nu 1HPO42- and the octacalcium phosphate (OCP)-like phase during the transformation process. High-resolution transmission electron microscopy analyses also confirm the existence of OCP and HAP within an amorphous matrix phase. In support of clinical observations, we further demonstrate the inhibitory effect of OPN peptide segments on the dissolution of DCPD and reprecipitation of acidic ACP. The definition of respective roles of DCPD and OPN thereby provides insights into the control of nucleus formation and subsequent inhibition of pathological mineralization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据