4.5 Article

Molecular Insights into Water Clusters Formed in Tributylphosphate-Di-(2-ethylhexyl)phosphoric Acid Extractant Systems from Experiments and Molecular Dynamics Simulations

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 123, 期 7, 页码 1618-1635

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.8b10831

关键词

-

资金

  1. Pidilite Industries, India

向作者/读者索取更多资源

Di-(2-ethylhexyl)phosphoric acid (D2EHPA) and tributylphosphate (TBP) are two of the most studied and researched organophosphorous extractants. D2EHPA is an acidic extractant, offering both hydrogen bond donor and acceptor sites while TBP, a neutral extractant, only offers a single acceptor site per molecule. In spite of this, it is observed that 1 M D2EHPA in dodecane is a poorer extractant for water than 1 M TBP in dodecane. The objective of present work is to look into the molecular interactions that cause such behavior. Experiments were carried out with varying molar ratios of TBP and D2EHPA in the organic dodecane phase. Total extractant concentration was kept constant at 1 M with dodecane as diluent. Water extraction was quantified by measuring the moisture content of the organic phase after equilibration. H-1 and P-31 NMR spectra of the organic phase samples were recorded to study the change in the chemical environment upon extraction. Small angle X-ray scattering data of water saturated extractant phases were analyzed for the possibility of a reverse micellar aggregate formation. Molecular dynamics simulations could calculate free energies in quantitative agreement with experiments. Experimental and simulation studies showed that aggregation in the organic phase was promoted by the presence of water. This combined approach, of experiments and simulation, has shown that water is indispensable for the formation of ordered aggregates of extractants in nonpolar organic solvents. It is seen that, in the organic phase, around 80% of water's hydrogen bonds are with extractant molecules rather than with itself. The analysis clearly indicates that, rather than forming an aqueous core surrounded by extractant, water acts as a bridge between extractant molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据