4.6 Article

Green synthesized multiple fluorescent nitrogen-doped carbon quantum dots as an efficient label-free optical nanoprobe for in vivo live-cell imaging

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2018.12.011

关键词

Phyllanthus acidus; Nitrogen-doped carbon quantum dots; Tunable fluorescence; Caenorhabditis elegans; Biocompatibility; Live-cell imaging

资金

  1. Nano Material Technology Development Program of the Korean National Research Foundation (NRF) - Korean Ministry of Education, Science, and Technology [2012M3A7B4049675]
  2. Priority Research Centers Program [2014R1A6A1031189]
  3. National Research Foundation (NRF) of Korea - Ministry of Science, Information and Communications Technology (MSIT) of Korea government [2017R1C1B5076345]

向作者/读者索取更多资源

In this work, nitrogen-doped carbon quantum dots (N-CQDs) have been synthesized successfully by a simple hydrothermal method and demonstrated its application for multicolor imaging in Caenorhabditis elegans (C. elegans) as an in vivo model. The synthesized N-CQDs were characterized by various physicochemical techniques such as XRD, Raman spectroscopy, ATR-FTIR spectroscopy, XPS, HRTEM, UV-vis spectroscopy, and fluorescence spectroscopy. The synthesized N-CQDs exhibited a strong fluorescence due to the uniform size distribution with nitrogen-containing and oxygen-containing functional groups onto the surface of N-CQDs which induce the excellent dispersibility in aqueous media. The N-CQDs has an excitation-dependent fluorescence behavior and the strongest fluorescence appeared at 411 nm (emission peak position) under the excitation of 340 nm. Also, the N-CQDs displayed a high quantum yield (QY) of 12.5. The fluorescence behaviour of the aqueous N-CQDs suspension retains for a long time up to 1 year. The prolonging fluorescent N-CQDs was utilized as a staining agent for bioimaging and toxicity of N-CQDs on C. elegans that was conducted by killing assay. In-vivo studies suggested that the N-CQDs displayed excellent biocompatibility and successfully used for high-contrast imaging of N-CQDs in living and dead C. elegans. Based on the strongest fluorescence along with excellent aqueous dispersibility and biocompatibility, the green synthesized N-CQDs would be an ideal candidate for many biological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据