4.6 Article

Regression convolutional neural network for improved simultaneous EMG control

期刊

JOURNAL OF NEURAL ENGINEERING
卷 16, 期 3, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1741-2552/ab0e2e

关键词

emg; myoelectric control; machine learning; prostheses; deep learning

资金

  1. national brain mapping laboratory

向作者/读者索取更多资源

Objective. Deep learning models can learn representations of data that extract useful information in order to perform prediction without feature engineering. In this paper, an electromyography (EMG) control scheme with a regression convolutional neural network (CNN) is proposed as a substitute of conventional regression models that use purposefully designed features. Approach. The usability of the regression CNN model is validated for the first time, using an online Fitts' law style test with both individual and simultaneous wrist motions. Results were compared to that of a support vector regression-based scheme with a group of widely used extracted features. Main results. In spite of the proven efficiency of these well-known features, the CNN-based system outperformed the support vector machine (SVM) based scheme in throughput, due to higher regression accuracies especially with high EMG amplitudes. Significance. These results indicate that the CNN model can extract underlying motor control information from EMG signals during single and multiple degree-of-freedom (DoF) tasks. The advantage of regression CNN over classification CNN (studied previously) is that it allows independent and simultaneous control of motions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据