4.6 Article

Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays

期刊

JOURNAL OF NEURAL ENGINEERING
卷 16, 期 3, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1741-2552/ab05b6

关键词

flexible neural electrodes; parallel implantation; minimal tissue damage

资金

  1. Microelectronics Research Center at UT Austin
  2. National Institute of Neurological Disorders and Stroke [R01NS102917]
  3. UT BRAIN Seed grant [365459]
  4. Welch Foundation [F-1941-20170325]
  5. DOD CDMRP [W81XWH-16-1-0580]

向作者/读者索取更多资源

Objective. Implanted microelectrodes provide a unique means to directly interface with the nervous system but have been limited by the lack of stable functionality. There is growing evidence suggesting that substantially reducing the mechanical rigidity of neural electrodes promotes tissue compatibility and improves their recording stability in both the short- and long-term. However, the miniaturized dimensions and ultraflexibility desired for mitigating tissue responses preclude the probe's self-supported penetration into the brain tissue. Approach. Here we demonstrate the high-throughput implantation of multi-shank ultraflexible neural electrode arrays with surgical footprints as small as 200 mu m(2) in a mouse model. This is achieved by using arrays of tungsten microwires as shuttle devices, and bio-dissolvable adhesive polyethylene glycol (PEG) to temporarily attach a shank onto each microwire. Main results. We show the ability to simultaneously deliver electrode arrays in designed patterns, to adjust the implantation locations of the shanks by need, to target different brain structures, and to control the surgical injury by reducing the microwire diameters to cellular scale. Significance. These results provide a facile implantation method to apply ultraflexible neural probes in scalable neural recording.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据