4.2 Article

3-Mercaptopropionic, 4-Mercaptobenzoic, and Oleic Acid-Capped CdSe Quantum Dots: Interparticle Distance, Anchoring Groups, and Surface Passivation

期刊

JOURNAL OF NANOMATERIALS
卷 2019, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2019/2796746

关键词

-

资金

  1. CNPq
  2. CAPES
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [408182/2016-4, 424769/2018-2]
  4. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)

向作者/读者索取更多资源

The optoelectronic properties of quantum dots are strongly controlled by the chemical nature of their surface-passivating ligands. In this work, we present the synthesis, characterization, and surface modification of CdSe quantum dots (QDs) and their application in solar cells. CdSe QDs were capped in oleic acid (OA), 3-mercaptopropionic acid (MPA), and 4-mercaptobenzoic acid (MBA). The QDs were characterized by transmission electron microscopy (TEM), UV-Vis absorption and emission spectrophotometry, thermogravimetric analyses, and H-1 and C-13 NMR. From TEM analysis, it has been observed that interparticle distance can be effectively controlled by the presence of different molecular size ligands. From the H-1 and C-13 NMR, specific types of interactions between the Cd2+ and the ligands have been observed. Although CdSe/OA presented larger interparticle distance as compared to CdSe/MPA and CdSe/MBA, the photocatalytic oxidation of the thiol groups on the surface of the MPA- and MBA-based quantum dots resulted in poor surface stabilization, ultimately resulting in poor power conversion efficiencies which were ca. 70% smaller than that of OA-based solar cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据