4.4 Article

A theoretical exploration of the intermolecular interactions between resveratrol and water: a DFT and AIM analysis

期刊

JOURNAL OF MOLECULAR MODELING
卷 25, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00894-019-3941-7

关键词

Alkaloids; DFT; Extraction; H-bonding; Water

资金

  1. Science and Engineering Research Board-Department of Science and Technology (SERB-DST), India [EMR-II-SB/S1/PC-047/2013]

向作者/读者索取更多资源

The polyphenolic compound resveratrol, classified under stilbenes, offers a broad range of health advantages, including neuroprotection and playing a role in autophagy in the nervous system. However, resveratrol has poor water solubility and is soluble in the gel phase in liposomal membranes. The main aim of this work was to understand the nature of the interactions between resveratrol and water molecules. In the present study, we used the dispersion corrected density functional theory (DFT) method to study hydrogen bonding interactions. Eight different geometries of resveratrol-water complexes were identified by optimizing the geometries by placing water at various locations. We observed the two lowest energy structures to be isoenergetic. In most complexes, water interaction occurs with phenolic hydrogen as all the phenolic hydroxyl groups have identical V-s,V-max values. Energy decomposition analysis shows that the dispersion contribution was minimal in these complexes, while electrostatic and orbital contributions were larger. Complex formation between water and the resveratrol molecule results in a blue shift in the vibrational frequency, along with an increase in intensity due to the transfer of electron density. The hydrogen bonds in the resveratrol-water complexes have closed-shell interactions with a medium-to-strong bonding nature. Noncovalent index analysis of the complexes shows that, in addition to hydrogen bonding, electrostatic and van der Waal's interactions play a key role in stabilizing the complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据