4.6 Article

Improving corrosion resistance of additively manufactured nickel-titanium biomedical devices by micro-arc oxidation process

期刊

JOURNAL OF MATERIALS SCIENCE
卷 54, 期 9, 页码 7333-7355

出版社

SPRINGER
DOI: 10.1007/s10853-019-03375-1

关键词

-

向作者/读者索取更多资源

Nickel-titanium (NiTi) alloys have recently attracted considerable attention due to their unique properties, i.e., shape memory effect and superelasticity. In addition, these promising alloys demonstrate unique biocompatibility, represented in their high stability and corrosion resistance in aqueous environments, qualifying them to be used inside the human body. In recent years, additive manufacturing (AM) processes have been envisioned as an enabling method for the efficient production of NiTi components with complex geometries as patient-specific implants. In spite of its great capabilities, AM as a novel fabrication process may reduce the corrosion resistance of NiTi parts leading to the excess release of the harmful Ni ions as the main corrosion byproducts. The main goal of this study is to create and evaluate a micro-arc oxidation (MAO) coating in order to enhance the corrosion resistance of additively manufacture NiTi medical devices. To this end, the process voltage and electrolyte used to produce MAO coating have been investigated and optimized. The corrosion characteristics of the MAO-coated specimens revealed that the proposed coating methodology significantly improves the corrosion resistance of NiTi parts produced using AM process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据