4.7 Article

Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 365, 期 -, 页码 137-145

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2018.10.086

关键词

Plant microbial fuel cell; Cr(VI); Electricity production; Chinese pennisetum; Graphite carbon felt

资金

  1. Soil and Groundwater Remediation Fund Management Board, Environmental Protection Administration, Executive Yuan, Taiwan
  2. Ministry of Science and Technology, Taiwan [106-2221-E-002-023-MY3]
  3. National Taiwan University from Excellence Research Program - Core Consortiums under Higher Education Sprout Project, Ministry of Education, Taiwan [NTUCCP-107L891303]

向作者/读者索取更多资源

The plant microbial fuel cell (PMFC) is a novel technology which integrates plants, microbes, and electrochemical elements together to create renewable energy. However, information regarding using the PMFC system to remediate metal-contaminated soils is still limited. In this study, we evaluate the potential of PMFC systems to remediate soils polluted by Cr(VI). We compare different plants and different electrode materials with regard to their electricity generation and Cr(VI) removals under different soil Cr(VI) concentrations. In PMFC systems, the soil pH was transformed from slightly acidic to neutral, and the electrical conductivity was reduced during operation. The removal efficiency of Cr(VI) in soils could reach 99%, and the total Cr of soils could also be reduced. The closed circuit voltage of PMFC systems of Chinese pennisetum using the graphite carbon felt as the electrodes could reach the daily average value of 469.21 mV. PMFC systems have successfully demonstrated the ability to remove Cr(VI) from soils collected from actual metal-contaminated sites. Our results suggest that using PMFCs to remediate contaminated soils is promising, and the effects of decontamination are mostly contributed by bioelectrochemical processes and plant uptake.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据