4.7 Article

Development of a composite membrane with underwater-oleophobic fibrous surface for robust anti-oil-fouling membrane distillation

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 537, 期 -, 页码 375-383

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.11.040

关键词

Membrane fouling; Oleophobic surface; Membrane distillation; Composite membrane; Electrospinning

资金

  1. National Natural Science Foundation of China [51678555, 51478454]
  2. National Key R&D Program of China [2016YFC0400500]

向作者/读者索取更多资源

Membrane fouling caused by non-polar foulants is a challenging problem for hydrophobic membranes, which hinders the industrial implementation of membrane distillation (MD). The hydrophilic coating can create a hydration layer at solid-water interface, thereby the hydrophilic surfaces are expected to supply a barrier inhibiting adhesion of hydrophobic foulants. Hence, it should be possible to develop anti-fouling composite membranes through constructing a hydrophilic skin layer onto hydrophobic MD membranes. Herein, we fabricated a novel composite membrane for excellent anti-oil-fouling performance in MD process by electrospinning polyetherimide (PEI) nanofibers on the hydrophobic polyvinylidene fluoride (PVDF) membrane surface, followed by cross-linking with ethanediamine (EDA). The membrane morphology and structure properties, surface zeta potential and wettability, thermal stability were all systematically characterized, and force spectroscopy was used to quasi-quantitatively evaluate oil-membrane adhesion force. Compared with the PVDF membrane, the PVDF/PEI-EDA composite membrane exhibited strong resistance to crude oil with underwater oil contact angle of about 145 degrees and low oil-membrane adhesion force, which contributed to the stable performance during MD desalinating an oily and saline solution. The fabricated composite membrane with underwater-oleophobic fibrous surface can effectively mitigate oil-fouling in MD and promote MD to treat highly saline wastewater with high concentration of hydrophobic foulants. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据