4.7 Article

A solid-state chemical reduction approach to synthesize graphitic carbon nitride with tunable nitrogen defects for efficient visible-light photocatalytic hydrogen evolution

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 535, 期 -, 页码 331-340

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.10.012

关键词

g-C3N4; Solid-state chemical reduction; Nitrogen defects; Photocatalytic hydrogen production

资金

  1. National Natural Science Foundation of China [50702022, 51602105]
  2. Natural Science Foundation of Guangdong Province, China [2014A030313245, 2017A030313331]
  3. State Key Laboratory of Pulp and Paper Engineering, China [201624]

向作者/读者索取更多资源

Graphitic carbon nitride with nitrogen defects (g-C3N4-x) is prepared by a facile and effective solid-state chemical reduction technique at mild temperature conditions. The cyano groups and nitrogen vacancies, as evidenced by electron paramagnetic resonance (EPR), X-ray photoelectron spectrometer (XPS), Fourier transform infrared spectra (FTIR) and Solid-state C-13 MAS NMR spectra, are controllable via adjusting chemical reduction temperature. Comparing to the pristine g-C3N4, the as-prepared g-C3N4-x shows much enhanced photocatalytic H-2 evolution activity under visible-light irradiation. The maximum H-2 evolution rate of 3068 mu mol.g(-1).h(-1) is achieved with g-C3N4-x after chemical reduction treatment at 400 degrees C for 1 h, which is 4.85 times that of the pristine g-C3N4. Moreover, excellent reusability and storage stability have been shown by this photocatalyst as well. It is discovered that nitrogen defects can result in both the up-shift of the valance band and the down-shift of the conduction band, which benefit the absorption of longer wavelength photons and trapping of the photoinduced electrons, therefore reducing the recombination losses of the generated carriers. It is because of this improved visible-light absorption and charge carrier separation, g-C3N4-x displays better visible-light photocatalytic activity compared to the pristine g-C3N4. It is then concluded that the synthetic strategy presented here represents a straightforward and efficient way to synergistically optimize the chemical composition, optical response, and photocatalytic characteristics of g-C3N4-based photocatalysts. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据