4.7 Article

Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 150, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5080199

关键词

-

资金

  1. DFG

向作者/读者索取更多资源

The energy conversion efficiency of organic solar cells seems crucial for a clean future. The design of new light-harvesting devices needs an in-depth understanding of their optical properties, including the excited-state absorption (ESA). In biology, the optical characterization of photochemical/physical processes happening in photosynthetic pigments and proteins can be difficult to interpret due to their structural complexities. Experimentally, an ultrafast transient absorption experiment can probe the excited state interaction with light. Quantum chemistry could play an important role to model the transient absorption spectrum of excited states. However, systems that need to be investigated can be way too large for existent software implementations. In this contribution, we present the first sTDA/sTD-DFT (simplified time-dependent density functional theory with and without Tamm Dancoff approximation) implementation to evaluate the ESA of molecules. The ultrafast ESA evaluation presents a negligible extra cost with respect to sTDA/sTD-DFT original schemes for standard ground state absorption. The sTD-DFT method shows ability to assign ESA spectra to the correct excited state. We showed that in the literature, wrong assignments were proposed as for the L34/L44 mixture and N-methylfulleropyrrolidine. In addition, sTDA/sTD-DFT-xTB tight-binding variants are also available, allowing the evaluation of ESA for systems of a few thousands of atoms, e.g., the spectrum of the photoactive yellow protein composed of 1931 atoms. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据