4.7 Article

On approximating a weak Markovian process as Markovian: Are we justified when discarding longtime correlations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 150, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5056242

关键词

-

资金

  1. National Institutes of Health (NIH) [1R01GM120578]
  2. Arkansas Bioscience Institute
  3. NSF [MRI-R2 0959124]

向作者/读者索取更多资源

The effect for removing weak longtime correlation is studied using a model system that contains a driven atom at liquid density under strong thermal fluctuations. The force that drives the tagged particle is about 1% of the average random force experienced by the particle. The tagged particle is allowed to assume a range of masses from 1/8 to 80 times that of a surrounding particle to study the effects of inertia. The driving force is indefinitely correlated but much weaker than random fluctuations from the environment. From this study, it is shown that the environmental influence is not fully random leading to the force autocorrelation function being a poor metric for detecting the correlated driving force. Although the velocity autocorrelation function shows stronger correlation for systems with higher inertia, the velocity autocorrelation function decays to a very small value of 2.5x10(3) even for the most massive driven particle. For systems with small inertia, our study reveals that discarding longtime correlation has negligible influence on the first passage time (FPT) estimate, whereas for particles with large inertia, the deviation can indeed be appreciable. It is interesting that the Markov State Model (MSM) still produces reasonable estimates on the FPT even when a very short lag time that clearly violates the Markovianity assumption is used. This is likely a result of favorable error cancellations when the MSM transition probability matrices were constructed using trajectories that are much longer than the lag time. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据