4.6 Article

Analytical model for the intensity dependence of 1500 nm to 980 nm upconversion in Er3+: A new tool for material characterization

期刊

JOURNAL OF APPLIED PHYSICS
卷 125, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5064409

关键词

-

资金

  1. Innovation Fund Denmark under the project SunTune

向作者/读者索取更多资源

We propose a simplified rate-equation model for the 1500 nm to 980 nm upconversion in Er3+. The simplifications, based on typical experimental conditions as well as on conclusions based on previously published more advanced models, enable an analytical solution of the rate equations, which reproduces known properties of upconversion. We have compared the model predictions with intensity-dependent measurements on four samples with different optical properties, such as upconversion-luminescence yield and the characteristic lifetime of the I-4(13/2) state. The saturation of the upconversion is in all cases well-described by the model over several orders of magnitude in excitation intensities. Finally, the model provides a new measure for the quality of upconverter systems based on Er3+-the saturation intensity. This parameter provides valuable information on upconversion parameters such as the rates of energy-transfer upconversion and cross-relaxation. In the present investigation, we used the saturation intensity to conclude that the differences in upconversion performance of the investigated samples are mainly due to differences in the non-radiative relaxation rates. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据