4.6 Article

Complement C5 Inhibition Reduces T Cell-Mediated Allograft Vasculopathy Caused by Both Alloantibody and Ischemia Reperfusion Injury in Humanized Mice

期刊

AMERICAN JOURNAL OF TRANSPLANTATION
卷 16, 期 10, 页码 2865-2876

出版社

WILEY-BLACKWELL
DOI: 10.1111/ajt.13834

关键词

-

资金

  1. National Heart, Lung, and Blood Institute (NHLBI) [K99 HL125895 01, T32 HL007974 14]
  2. NHLBI [R01HL109455]
  3. Alexion Pharmaceuticals

向作者/读者索取更多资源

Allograft vasculopathy (AV) is characterized by diffuse stenoses in the vasculature of solid organ transplants. Previously, we developed two humanized models showing that alloantibody and ischemia reperfusion injury (IRI) exacerbated T cell-mediated AV in human arterial xenografts in vivo. Herein we examined a causal role for terminal complement activation in both settings. IRI, in contrast to alloantibody, elicited widespread membrane attack complex (MAC) assembly throughout the vessel wall. Both alloantibody and IRI caused early (24 h) and robust endothelial cell (EC) activation localized to regions of intimal MAC deposition, indicated by increases in nuclear factor kappa B (NF-kappa B)-inducing kinase, an MAC-dependent activator of noncanonical NF-kB, VCAM-1 expression and Gr-1+ neutrophil infiltration. Endothelial cell activation by alloantibody was inhibited by antimouse C5 mAb, but not by anti-C5a mAb or by control mAb, implicating MAC as the primary target of anti-C5 mAb. Antimouse C5 mAb significantly reduced alloantibody-and IRI-enhanced T cell infiltration and AV-like changes, including neointimal hyperplasia as well as intraluminal thrombosis in a subset of IRI-treated arterial grafts. These results indicate that increased AV lesion formation in response to either alloantibody or IRI is dependent on complement C5 activation and, accordingly, inhibition of this pathway may attenuate AV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据