4.6 Article

Discrete-element model for dynamic fracture of a single particle

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2019.01.033

关键词

Granular materials; DEM; Contact dynamics; Impact test; Fracture energy; Damage

向作者/读者索取更多资源

We investigate the dynamic fracture of a single particle impacting a flat surface using 3D DEM simulations based on a fragmentation model involving both a stress threshold and a fracture energy. The particle is assumed to be perfectly rigid and discretized into polyhedral Vorondi cells with cohesive interfaces. A cell-cell interface loses its cohesion when it is at a normal or tangential stress threshold and an amount of work equal to the fracture energy is absorbed as a result of the relative cell-cell displacements. Upon impact, the kinetic energy of the particle is partially consumed to fracture cell-cell contacts but also restituted to the fragments or dissipated by inelastic collisions. We analyze the damage and fragmentation efficiency as a function of the impact energy and stress thresholds and their scaling with fracture energy and impact force. In particular, we find that the fragmentation efficiency, defined as the ratio of the consumed fracture energy to the impact energy, is unmonotonic as a function of the impact energy, the highest efficiency occurring for a specific value of the impact energy. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据