4.4 Article

Theoretical scrutinization of nine benzoic acid dimers: Stability and energy decomposition analysis

期刊

出版社

WILEY
DOI: 10.1002/qua.25918

关键词

benzoic acid dimer; density functional theory-based molecular dynamics; interacting quantum fragments; noncovalent interactions

资金

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia

向作者/读者索取更多资源

Aromatic carboxylic acids are able to form diverse dimers and multimers due to their hydrogen bond donor and acceptor cites, as well as the aromatic rings. In this work, we examine nine benzoic acid dimers stabilized by hydrogen bonding and stacking interactions. Interacting quantum atoms methodology revealed that dominant attractive interactions in all of them, including hydrogen bonded systems, are due to exchange-correlation. Coulomb interactions are significant only in the most stable dimer with a double hydrogen bond, although the corresponding energy term is almost two times lower compared to the nonclassical one. Since interacting quantum atoms approach treats monomers binding by considering electronic energy only, in order to examine dissociation kinetics we performed density functional theory-based molecular dynamics simulations of selected stacked dimers: in 40% of the studied systems at 300 K thermal energy was sufficient to overpower barrier for dissociation within 1 ps, which resulted in the separation of the monomers, whereas 20% of them remained in the stacked position even after 5 ps. These results highlight the importance of noncovalent interactions, particularly weak stacking interactions, on the structure and dynamics of carboxylic acids and their derivatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据