4.5 Article

Frequent HRAS Mutations in Malignant Ectomesenchymoma: Overlapping Genetic Abnormalities With Embryonal Rhabdomyosarcoma

期刊

AMERICAN JOURNAL OF SURGICAL PATHOLOGY
卷 40, 期 7, 页码 876-885

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/PAS.0000000000000612

关键词

ectomesenchymoma; rhabdomyosarcoma; HRAS; PTPRD; FBXW7

资金

  1. Kristen Ann Carr Foundation
  2. Cycle for Survival
  3. [P50 CA140146-01]
  4. [P30-CA008748]

向作者/读者索取更多资源

Malignant ectomesenchymoma (MEM) is an exceedingly rare pediatric sarcoma with a predilection for infants and young children and is composed of dual malignant mesenchymal and neuroectodermal components. Microscopically, MEM displays areas of rhabdomyosarcoma (RMS) with intermixed neuronal/neuroblastic foci. The molecular alterations associated with MEM and its relationship with embryonal RMS (ERMS) and malignant peripheral nerve sheath tumor (MPNST) have not yet been elucidated. In this study we used whole-transcriptome sequencing in 2 MEM index cases with available frozen tissue, followed by screening of the identified genetic abnormalities in 5 additional cases. No candidate fusion genes were detected by FusionSeq analysis; however, the mutation detection algorithms revealed HRAS and PTPRD hotspot mutations in both index cases, with 1 case harboring an additional FBXW7 mutation. As these mutation profiles have been previously described in ERMS we have tested their incidence in a control group of 7 age-matched ERMS. In addition, the gene signature of MEM was compared with that of RMS, MPNST, and neuronal lineage. All 7 MEM patients were male, with a mean age of 7.5 months (range, 0.6 to 17 mo). All except 1 occurred in the pelvic/urogenital region. Most cases showed ERMS elements, with occasional spindle or undifferentiated/round cell areas. The intermixed neuroectodermal components were mostly scattered ganglion cells, ganglioneuroma, or ganglioneuroblastoma. By Sanger sequencing, 6 of 7 (86%) MEMs had HRAS mutations, with no additional case harboring PTPRD or FBXW7 mutations. The only case lacking HRAS mutation showed neuroblastic micronodules without ganglion cells. The trimethylation at lysine 27 of histone H3 (H3K27me3) expression, typically lost in MPNST, was retained in all cases. In the control ERMS group, 5 of 7 (71%) showed RAS mutations, equally distributed among NRAS, KRAS, and HRAS genes. The expression profiling of MEM showed upregulation of skeletal muscle and neuronal genes, with no significant overlap with MPNST. Our results of common HRAS mutations and composite gene signature with RMS and neuronal/neuroblastic elements suggest a closer genetic link of MEM to RMS rather than to MPNST.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据