4.7 Article

High-Throughput Virtual Screening, Molecular Dynamics Simulation, and Enzyme Kinetics Identified ZINC84525623 as a Potential Inhibitor of NDM-1

期刊

出版社

MDPI
DOI: 10.3390/ijms20040819

关键词

antibiotic resistance; -lactamases; Escherichia coli; Klebsiella pneumoniae; carbapenemase; molecular docking and simulation

资金

  1. Deanship of Scientific Research [RGP-150]
  2. King Saud University, Riyadh, Kingdom of Saudi Arabia

向作者/读者索取更多资源

The bacteria expressing New Delhi Metallo--lactamase-1 (NDM-1) can hydrolyze all -lactam antibiotics including carbapenems, causing multi-drug resistance. The worldwide emergence and dissemination of gene bla(NDM-1) (produces NDM-1) in hospital and community settings, rising problems for public health. Indeed, there is an urgent need for NDM-1 inhibitors to manage antibiotic resistance. Here, we have identified novel non--lactam ring-containing inhibitors of NDM-1 by applying a high-throughput virtual screening of lead-like subset of ZINC database. The screened compounds were followed for the molecular docking, the molecular dynamics simulation, and then enzyme kinetics assessment. The adopted screening procedure funnels out five novel inhibitors of NDM-1 including ZINC10936382, ZINC30479078, ZINC41493045, ZINC7424911, and ZINC84525623. The molecular mechanics-generalized born surface area and molecular dynamics (MD) simulation showed that ZINC84525623 formed the most stable complex with NDM-1. Furthermore, analyses of the binding pose after MD simulation revealed that ZINC84525623 formed two hydrogen bonds (electrostatic and hydrophobic interaction) with key amino acid residues of the NDM-1 active site. The docking binding free energy and docking binding constant for the ZINC84525623 and NDM-1 interaction were estimated to be -11.234 kcal/mol, and 1.74 x 10(8) M-1 respectively. Steady-state enzyme kinetics in the presence of ZINC84525623 show the decreased catalytic efficiency (i.e., k(cat)/K-m) of NDM-1 on various antibiotics. The findings of this study would be helpful in identifying novel inhibitors against other -lactamases from a pool of large databases. Furthermore, the identified inhibitor (ZINC84525623) could be developed as efficient drug candidates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据