4.7 Article

Numerical optimization on microchannel flow and heat transfer performance based on field synergy principle

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2018.10.112

关键词

Filed synergy principle; Heat transfer enhancement; Microchannel; Axial heat conduction

资金

  1. National Basic Research Program [2015CB057206]

向作者/读者索取更多资源

As the development of integrated circuit (IC) devices continuously towards high density and high integration, microchannel cooling technology is becoming an inevitable option for solving heat dissipation of high power density. This work investigated the field synergy and heat transfer performance of the microchannels with three different internal spoiler cavities configurations using a three-dimension numerical simulation of conjugate heat transfer model. The analysis of temperature field, flow field, field synergy angle and thermal characteristics were presented to discuss the heat transfer enhancement mechanism. It was found that the field synergy angle and Nu number have a good consistency on evaluating the heat transfer enhancement in terms of the internal spoiler cavities in the microchannel. Additionally, the field synergy effect in the microchannels was optimal when the internal spoiler cavities of the microchannels were configured in form of front-loose-back-compact (FLBC) under laminar flow, which could achieve the optimization of heat dissipation performance in a limited space without any pressure drop. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据