4.7 Article

Determination of optimum Pd:Ni ratio for PdxNi100-x/CNTs formic acid electrooxidation catalysts synthesized via sodium borohydride reduction method

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 43, 期 8, 页码 3436-3445

出版社

WILEY
DOI: 10.1002/er.4485

关键词

formic acid electrooxidation; metal composition; Ni; optimization; Pd

资金

  1. Turkiye Bilimsel ve Teknolojik Arastirma Kurumu [114M156, 114M879]

向作者/读者索取更多资源

The main purpose of this study is to investigate the optimum Pd:Ni molar ratio for carbon nanotube-supported PdNi (PdxNi100-x/CNT) alloy catalysts toward formic acid electrooxidation (FAE). NaBH4 reduction method was employed for the synthesis of Pd90Ni10/CNT, Pd70Ni30/CNT, Pd50Ni50/CNT, and Pd40Ni60/CNT. Synthesized catalysts were characterized by employing advanced surface analytical techniques, namely, X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption-desorption, and inductively coupled plasma-mass spectrometry (ICP-MS). The characterization results showed that all catalysts were successfully synthesized at desired molar composition. Pd90Ni10/CNT displayed the highest specific and mass activities with 2.32 mA/cm(2) and 613.9 mA/mg Pd, respectively. Specific activity of the Pd90Ni10/CNT was found approximately 3.6, 2.3, 11.1, and 3.4 times higher than those of Pd70Ni30/CNT, Pd50Ni50/CNT, Pd40Ni60/CNT, and Pd/CNT, respectively. The synergistic effect between Pd and Ni at optimized metal ratio was utilized to obtain an improvement in specific activity. Furthermore, Pd90Ni10/CNT showed the lowest charge transfer resistance (R-ct) and a long-term stability. To our knowledge, this is the first study reporting the optimization of atomic molar composition for PdxNi100-x/CNT catalysts toward FAE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据