4.7 Article

Catalytic phenol removal using entrapped cross-linked laccase aggregates

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijbiomac.2018.10.147

关键词

Laccase; Entrapped-cross-linked enzyme aggregates; Porous silica; Immobilization; Phenol

资金

  1. Tehran University of Medical Sciences (TUMS) Iran
  2. Iran National Science Foundation (INSF), Iran
  3. University of Tehran (UT), Iran

向作者/读者索取更多资源

Laccase was immobilized using a combinatorial strategy of cross-linking and entrapping in mesoporous silica to prepare entrapped enzyme species including simply adsorbed, entrapped cross-linked enzyme (E-CLE) and entrapped cross-linked enzyme aggregate (E-CLEA) to explore their potential in phenol removal. Parameters including pH, temperature, time and cross-linker concentration were optimized to achieve an immobilized product with highest laccase specific activity. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the immobilization products. The storage and operational stability analysis were also carried out. Accordingly, E-CLEAs showed improved thermal and pH stabilities and activity retention in hydrophobic and hydrophilic solvents. Moreover, based on the resulted half-lives (t(1/2)) for free and insoluble laccases, the improved storage stability is reported for E-CLEAs at 1.71 and 20.88 days for them, respectively. In addition, the immobilized biocatalyst exhibited good operational stability and reusability through maintaining up to 79% of its initial activity after 20 cycles of successive operations. In conclusion, E-CLEAs have catalytic potential in efficient phenol removal and advantages of the insolubilized form of laccase as E-CLEAs make it an appealing system in applications such as possible treatment of phenol contaminated wastewater. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据