4.6 Article

Evaluation of the impact of scanning strategies on residual stresses in selective laser melting

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-019-03396-9

关键词

Selective laser melting; Scanning strategies; Residual stresses; X-ray diffraction

资金

  1. Department of Science and Technology of South Africa

向作者/读者索取更多资源

The occurrence of residual stresses in selective laser melting (SLM) presents challenges that limit the capability of the process to manufacture parts at industrial scale. These stresses can have irreversible effects such as warping and cracking of parts during and post manufacturing. One of the most important SLM parameters that should be controlled carefully in order to effectively manage residual stresses is the scanning strategy. This study presents an evaluation of four different scanning strategies, namely the island, successive, successive chessboard and least heat influence (LHI) scanning strategies with respect to their influence on residual stresses and distortions. All the scanning strategies were investigated by melting single tracks on tool steel substrates without powder. Measurement of residual stresses was performed on selected positions on the substrates before and after exposure to the laser beam using the x-ray diffraction technique. The successive chessboard scanning strategy was found to contribute to the least average residual stresses, and lowered residual stress by up to 40% relative to the default island scanning strategy. Further to this, the influence of the successive chessboard and island scanning strategies on distortions was evaluated. Similar to the residual stress findings, the successive chessboard contributed to lower form deviations compared to the island strategy. The scanning strategies were also evaluated based on their impact on total scanning times, with the successive chessboard strategy showing slightly lower scanning time than that for the island and LHI chessboard strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据