4.6 Article

SoftFEM: The Soft Finite Element Method

出版社

WILEY
DOI: 10.1002/nme.6029

关键词

finite element method; heuristic optimization; soft computing; SoftFEM; solid mechanics

资金

  1. Spanish Ministry of Science and Innovation [TIN2017-83132-C2-2-R]
  2. Universidad Politecnica de Madrid [PINV-18-XEOGHQ-19-4QTEBP]

向作者/读者索取更多资源

While the finite element method (FEM) has now reached full maturity both in academy and industry, its use in optimization pipelines remains either computationally intensive or cumbersome. In particular, currently used optimization schemes leveraging FEM still require the choice of dedicated optimization algorithms for a specific design problem, and a black box approach to FEM-based optimization remains elusive. To this end, we propose here an integrated finite element-soft computing method, ie, the soft FEM (SoftFEM), which integrates a finite element solver within a metaheuristic search wrapper. To illustrate this general method, we focus here on solid mechanics problems. For these problems, SoftFEM is able to optimize geometry changes and mechanistic measures based on geometry constraints and material properties inputs. From the optimization perspective, the use of a fitness function based on finite element calculation imposes a series of challenges. To bypass the limitations in search capabilities of the usual optimization techniques (local search and gradient-based methods), we propose, instead a hybrid self adaptive search technique, the multiple offspring sampling (MOS), combining two metaheuristics methods: one population-based differential evolution method and a local search optimizer. The formulation coupling FEM to the optimization wrapper is presented in detail and its flexibility is illustrated with three representative solid mechanics problems. More particularly, we propose here the MOS as the most versatile search algorithm for SoftFEM. A new method for the identification of nonfully determined parameters is also proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据